Disruption of HPV16-E7 by CRISPR/Cas System Induces Apoptosis and Growth Inhibition in HPV16 Positive Human Cervical Cancer Cells
نویسندگان
چکیده
High-risk human papillomavirus (HR-HPV) has been recognized as a major causative agent for cervical cancer. Upon HPV infection, early genes E6 and E7 play important roles in maintaining malignant phenotype of cervical cancer cells. By using clustered regularly interspaced short palindromic repeats- (CRISPR-) associated protein system (CRISPR/Cas system), a widely used genome editing tool in many organisms, to target HPV16-E7 DNA in HPV positive cell lines, we showed for the first time that the HPV16-E7 single-guide RNA (sgRNA) guided CRISPR/Cas system could disrupt HPV16-E7 DNA at specific sites, inducing apoptosis and growth inhibition in HPV positive SiHa and Caski cells, but not in HPV negative C33A and HEK293 cells. Moreover, disruption of E7 DNA directly leads to downregulation of E7 protein and upregulation of tumor suppressor protein pRb. Therefore, our results suggest that HPV16-E7 gRNA guided CRISPR/Cas system might be used as a therapeutic strategy for the treatment of cervical cancer.
منابع مشابه
Disruption of human papillomavirus 16 E6 gene by clustered regularly interspaced short palindromic repeat/Cas system in human cervical cancer cells [Retraction]
High-risk human papillomavirus (HPV), especially HPV16, is considered a main causative agent of cervical cancer. Upon HPV infection, the viral oncoprotein E6 disrupts the host tumor-suppressor protein p53, thus promoting malignant transformation of normal cervical cells. Here, we used the newly developed programmable ribonucleic acid-guided clustered regularly interspaced short palindromic repe...
متن کاملZinc finger nucleases targeting the human papillomavirus E7 oncogene induce E7 disruption and a transformed phenotype in HPV16/18-positive cervical cancer cells.
PURPOSE Cervical cancer is mainly caused by infections of high-risk human papillomavirus (HR-HPV). Persistent expression of HR-HPV oncogenes E6 and E7 is implicated in malignant transformation. The aim was to provide proof-of-concept data to support use of zinc finger nucleases (ZFN) targeting HPV E7 to treat HPV-related cervical cancer. EXPERIMENTAL DESIGN We designed and constructed ZFNs th...
متن کاملIn Vitro and In Vivo Synergistic Therapeutic Effect of Cisplatin with Human Papillomavirus16 E6/E7 CRISPR/Cas9 on Cervical Cancer Cell Line
PURPOSE Human papillomavirus (HPV) type 16 is one of the major etiologic factors of cervical cancer. Our study aims to investigate the potentiality of the antiviral clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system (CRISPR/Cas9) targeting the E6 and E7 oncogenes of HPV16 as a potential chemosensitizer of cisplatin (cis-diaminedichloroplatinum II; CD...
متن کاملDeveloping Michigan Cancer Foundation 7 Cells with Stable Expression of E7 Gene of Human Papillomavirus Type 16
Background: Human papillomavirus (HPV) is responsible for the development of cervical neoplasia. Infection with human papillomavirus type 16 (HPV-16) is a major risk factor for the development of cervical cancer. The virus encodes three oncoproteins (E5, E6 and E7), of which, the E7 oncoprotein is the major protein involved in cell immortalization and transformation o...
متن کاملReversal of the malignant phenotype of cervical cancer CaSki cells through adeno-associated virus-mediated delivery of HPV16 E7 antisense RNA.
Human papillomavirus (HPV) infection is the most important risk factor for the development of cervical cancer. The oncogene E7 from high-risk HPV strains has the ability to immortalize epithelial cells and increase cellular transformation in culture. In this study, we explored the possibility of preventing cervical cancer growth by inhibiting HPV16 E7 expression through gene transfer of an anti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014